LOADING
C-Eval是一个适用于大语言模型的多层次多学科中文评估套件,由上海交通大学、清华大学和爱丁堡大学研究人员在2023年5月份联合推出,包含了13948个多项选择题,涵盖了52个不同的学...
C-Eval是一个适用于大语言模型的多层次多学科中文评估套件,由上海交通大学、清华大学和爱丁堡大学研究人员在2023年5月份联合推出,包含了13948个多项选择题,涵盖了52个不同的学科和四个难度级别,用以评测大模型中文理解能力。
MMBench是一个多模态基准测试,该体系开发了一个综合评估流程,从感知到认知能力逐级细分评估,覆盖20项细粒度能力,从互联网与权威基准数据集采集约3000道单项选择题。打破常规一问一答基于规则匹配提取选项进行评测,循环打乱选项验证输出结果的一致性,基于ChatGPT精准匹配模型回复至选项。
H2O EvalGPT 是 H2O.ai 用于评估和比较 LLM 大模型的开放工具,它提供了一个平台来了解模型在大量任务和基准测试中的性能。无论你是想使用大模型自动化工作流程或任务,H2O EvalGPT 都可以提供流行、开源、高性能大模型的详细排行榜,帮助你为项目选择最有效的模型完成具体任务。
LLMEval是由复旦大学NLP实验室推出的大模型评测基准,最新的LLMEval-3聚焦于专业知识能力评测,涵盖哲学、经济学、法学、教育学、文学、历史学、理学、工学、农学、医学、军事学、管理学、艺术学等教育部划定的13个学科门类、50余个二级学科,共计约20W道标准生成式问答题目。
CMMLU是一个综合性的中文评估基准,专门用于评估语言模型在中文语境下的知识和推理能力,涵盖了从基础学科到高级专业水平的67个主题。
SuperCLUE 是一个中文通用大模型综合性评测基准,从三个不同的维度评价模型的能力:基础能力、专业能力和中文特性能力。
Open LLM Leaderboard 是最大的大模型和数据集社区 HuggingFace 推出的开源大模型排行榜单,基于 Eleuther AI Language Model Evaluation Harness(Eleuther AI语言模型评估框架)封装。